Passenger Screening Strategies in Aviation Security: New Directions*	
Sheldon H. Jacobson, Laura A. McLay Simulation and Optimization Laboratory Department of Mechanical and Industrial Engineering University of Illinois Urbana, Illinois (217) 244-7275 shj@uiuc.edu	
John E. Kobza Department of Industrial Engineering Texas Tech University Lubbock, Texas (806) 742-3402 john.kobza@coe.ttu.edu	
TSA Briefing 3 October 2003	1

SOLUTIONS

What do solutions tell us?

- How to assign passengers to classes.
- Which specified classes to use / not to use.
- System security level
 - Computed as the sum of the products of the individual security levels and risk levels of the classes.
 - The risk level of each class is a function of the set of passengers (and their assessed threat values) assigned to that class.
- How the budget should be allocated for purchasing and maintaining equipment.
 - Devices associated with non-empty classes are purchased / maintained.

```
TSA Briefing
3 October 2003
```

SCENARIO PARAMETERS

- Number of classes.
- Number of passengers.
- Two sets of assessed threat value distributions.
 - Passengers are indistinguishable (identical assessed threat values).
 - Passengers are distinguishable, with truncated exponential assessed threat values between 0 and 1 (i.e., 80% of passengers having an assessed threat value less than 0.2).

TSA Briefing 3 October 200

DEVICE DATA

Device Type	False	Fixed	Marginal	Units/
	Clear	Costs*	Cost (\$)	hour
Explosive Detection System (EDS)	0.12	0.4167	1.00	125
Open Bag Trace (OT)	0.15	0.1199	0.83	28
Metal Detector (MD)	0.30	0.0051	0.28	90
Hand Wand Inspection (HW)	0.20	0.0009	1.25	20
X-ray Machine (XR)	0.20	0.0720	0.28	90
Detailed Hand Search (DHS)	0.20	0.0	1.25	20
Open Bag Trace with Detailed Hand Search (ODHS)	0.15	0.1199	1.29	18

CLASSES

- A class is a set of devices along with a procedure designating how passengers are screened.
 - All passengers are screened by all devices associated with the class they are assigned to.
- The security level for each class is measured by the overall true alarm of that class.
 - Function of false clear for the devices.
 - Assume that each passenger has one checked bag and one carryon bag.
 - Assume that a threat is equally likely to be detected in a checked bag, in a carry-on bag, or directly on the passenger.
 - A threat is detected if any device gives an alarm response. For example, if a bomb is in a checked bag, the threat is detected if any of the checked baggage screening devices give an alarm response.
- Number of classes: 3, 5, 8.

TSA Briefing 3 October 200

THREE SPECIFIED CLASSES

Class		Devices		FC	FC	FC	МС	Security
	Checked	Passenger	Carry-on	N=1230	N=3690	N=6200	(\$)	Level
1	EDS	MD	XR	67.49	202.47	340.19	1.56	0.793
2	EDS	MD, HW	XR, ODHS	67.62	202.85	340.83	2.81	0.927
3	EDS, OT	MD, HW	XR, ODHS	93.10	279.30	469.29	4.93	0.964

FIVE SPECIFIED CLASSES

Class		Devices		FC	FC	FC	MC	Security
	Checked	Passenger	Carry-on	N=1230	N=3690	N=6200	(\$)	Level
1		MD	XR	18.48	56.94	95.68	0.56	0.500
2	EDS	MD	XR	121.48	364.44	612.35	1.56	0.793
3	EDS	MD	XR, DHS	121.48	364.44	612.35	2.81	0.847
4	от	MD, HW	XR, DHS	48.70	146.10	245.47	2.64	0.917
5	EDS, OT	MD, HW	XR, ODHS	167.58	502.74	844.72	4.93	0.964
				SA Briefing October 2003				12

Class	Devices			FC	FC	FC	МС	Security
	Checked	Passenger	Carry-on	N=1230	N=3690	N=6200	(\$)	Level
1		MD	XR	23.73	71.18	119.60	0.56	0.500
2		MD, HW	XR	24.01	72.03	121.03	1.81	0.580
3	EDS	MD	XR	151.85	455.56	765.43	1.56	0.793
4	EDS	MD	XR, DHS	151.85	455.56	765.43	2.81	0.847
5	EDS	MD	XR, ODHS	152.14	456.41	766.87	2.81	0.873
6	от	MD, HW	XR, DHS	60.87	182.62	306.84	3.89	0.917
7	ОТ	MD, HW	XR, ODHS	81.35	244.05	410.06	3.93	0.920
8	EDS, OT	MD, HW	XR, ODHS	209.48	628.43	1055.90	4.93	0.964

Passenger Type	Number of Classes	Range (s) N = 1230	Range (s) N = 3690	Range (s) N = 6200
	3, optimality	[0.97, 1.3]	[0.97, 1.1]	[0.98 1.0]
Identical Passengers	3, heuristic	[0.031, 0.047]	[0.079, 0.11]	[0.093, 0.19]
	5, optimality	[1.17, 1.18]	[1.17, 1.18]	[1.17, 1.18]
	5, heuristic	[0.078, 0.27]	[0.17, 0.77]	[0.11, 0.48]
	8, optimality	[1.17, 1.18]	[1.17, 1.18]	[1.17, 1.18]
	8, heuristic	[0.078, 0.27]	[0.17, 0.77]	[0.20, 1.2]
	3, optimality	[1.95, 18.9]	[8.4, 10.6]	[31.2, 226.5]
	3, heuristic	[0.031, 0.047]	[0.062, 0.11]	[0.093, 0.19]
Distinguishable	5, optimality	[6.1, 86200]	[14.9, 157700]	[35.7, 78600]
Passengers	5, heuristic	[0.031, 0.11]	[0.078, 0.28]	[0.094, 0.48]
	8, optimality	[7.4, 114600]	[35.6, 128000]	[57.9, 14400]
	8, heuristic	[0.062, 0.26]	[0.19, 0.76]	[0.20, 1.3]
	sured in CPU secon only scenarios tha	ds t were solved to opt	imality	•
		TSA Briefing 3 October 2003		

RESULTS

- Given two scenarios with the same number of passengers, the same number of classes, and the same budget allocation, those scenarios assuming *indistinguishable passengers* (i.e., the same assessed threat values) always have <u>lower system security</u> <u>levels</u> than those scenarios assuming *distinguishable passengers* (i.e., different assessed threat values).
- Cost per person (for optimal solutions)
 - Ranges for overall security level of 90%
 - [\$2.64, \$3.64] for identical passengers
 - [\$2.12, \$2.78] for distinguishable passengers
 - Ranges for overall security level of 95%
 - [\$4.31, \$4.84] for identical passengers
 - [\$3.44, \$4.04] for distinguishable passengers

SA Briefing

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

IMPLICATIONS OF RESULTS

- Differentiating Passengers Improves Security
 - Scenarios with distinguishable passengers always have higher security levels than scenarios with indistinguishable passengers, given the same budget level.
 - Practical Implications
 - The accuracy of CAPPS II in assessing passenger threat levels is a critical factor.
- Only a Few Classes are Needed
 - Optimal solutions never used more than 3 classes.
 - Practical Implications
 - · Fewer devices to cross-train screeners to operate.
 - Fewer flow paths through the system reduces likelihood passenger taking wrong path (Intentionally or accidentally).
 - · Less space needed for more devices.
- Work in Progress
 - Passengers arriving dynamically.
 - An alternative model, where classes are defined in terms of (already purchased) devices and their associated capacities.

3 October 200

